
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Creep Effects in Nanometer-scale Contacts to Viscoelastic Materials: A
Status Report
W. N. Unertla

a Department of Physics and Laboratory for Surface Science and Technology, University of Maine,
Orono, ME, USA

To cite this Article Unertl, W. N.(2000) 'Creep Effects in Nanometer-scale Contacts to Viscoelastic Materials: A Status
Report', The Journal of Adhesion, 74: 1, 195 — 226
To link to this Article: DOI: 10.1080/00218460008034530
URL: http://dx.doi.org/10.1080/00218460008034530

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218460008034530
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J Arl l ie iot i .  ?OllO. Vol 74. lpp IL)S ~ 226 
Reprint5 ovailahle directly froiii tlic puhlishcr 
Phomcopying perrnilted hy license onl) 

I 2OOll OPA (Overseai Publishers Association) N V 
Published by licensc tinder 

the Gordon and Breach Science 
Puhlishers itnpniit. 

Printed 111 Malayva 

Creep Effects in Nanometer-scale 
Contacts to Viscoelastic Materials: 
AStatus Report 
W. N. UNERTL* 

Department of Physics and Laboratory for Surface Science 
and Technology, University of Maine, Orono, ME 04469, USA 

(Received 17 August 1999; In final form 21 December 1999) 

Efects of creep on the behavior of nanometer-scale contacts to viscoelastic materials are 
described from the viewpoint of the contact mechanics theory developed by Ting. The 
two most important elkcts are: (I) The time at which maximum contact area and 
maximum deformation occur can be delayed substantially from the time of maximum 
applied load. (2) The deformation at separation is related to the loss tangent. These long- 
range effects due to creep arc distinct from the much shorter-range crack tip effects 
induced by adhesion a t  the periphery of the contact and ociated with the names 
Barquins and Maugis. Consideration of relevant time scales reveals that creep effects are 
expected to dominate in SFM-scale contacts for a wide range of compliant viscoelastic 
materials. Guidelines for selection of optimal experimental parameters for nanometer- 
scale studies are presented. The need for a comprehensive theory is emphasized. 

K c , ~ w n ~ i s :  Viscoelastic materials: Nanomechanics; Contact deformation; Contact 
mechanics; Scanning force microscope 

1. INTRODUCTION AND BACKGROUND 

There is increasing need for quantitative measurements of properties 
of materials with nanometer-scale resolution. Applications include ma- 
terials characterization [ 1,2], microelectromechanical systems and 
tribology [3 - 71, and biological systems [8]. At present, the scanning 
force microscope (SFM) [ l ]  is the predominant method for such 
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196 W. N .  UNERTL 

measurements although other techniques are promising [9]. In SFM, 
the indenter is a sharp tip that is contacted to the sample and the 
mechanical response measured. The edge of the contact is frequently 
pictured as the tip of a crack [lo, 1 I ]  so that any increase or decrease 
in contact size is equivalent to the closing or opening of a crack at 
the contact periphery. The SFM tip shape is usually modeled as a 
paraboloid of revolutionf’(r) = r2/2Ro wheref(r) is the height at radius 
Y and R,, is the radius of curvature at  the point of contact [12, 131. 
Figure la  compares a parabolic profile with a typical dimension for 
SFM tips ( R ,  = 50 nm) with spherical profiles of radii 50 nm. Cylin- 
drical coordinates ( r , z )  are used. Notation used to describe the con- 
tacts is shown in Figure l b  for a rigid parabolic probe in contact 
with an initially-flat, perfectly-elastic substrate under time-dependent 

FIGURE I (a) Parabolic profile used to model the SFM probe (solid line) compared 
with a spherical profiles with a radius R,; (b) Geometry of a deformable contact between 
an axially-symmetric, rigid probe and flat surface. 
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NANOMETER-SCALE CONTACTS 197 

load P(t).  The radius of the circular contact is u(t)  and the rate at 
which it changes is V=du/dr; 6 ( P ,  t )  is the deformation along the 
symmetry axis. Mechanical properties such as modulus, yield strength, 
and work of adhesion are extracted from the SFM data using conti- 
nuum mechanics models from the field of contact mechanics [14, 151. 
These models include adhesion and are very well developed for con- 
tacts between elastic materials [ 161. 

Unfortunately, the appropriate contact mechanics analysis is not 
yet completed for viscoelastic materials. However, Johnson [ 171 has 
recently identified two limiting regimes, each with a characteristic re- 
sponse time. In this chapter, these regimes will be called the crack 
regime and the creep regime and their characteristic times the crack 
relaxation time, rcra&, and the creep relaxation time, T ~ ~ ~ ~ ~ .  In 
the creep regime, bulk deformations due primarily to the Hertz 
contact pressure are dominant and the effects of adhesion are 
neglected. Since the contact radius, a, characterizes the range of creep 
deformations, 

where ( V )  is the average value of V .  In the late 1960’s, Ting [18, 191 
solved the creep problem for cases where adhesion can be neglected. 
More recently, Wahl, Stepnowski and Unertl reported creep effects in 
SFM studies of 1,2 polybutadiene [20,21]. The primary purpose of this 
article is to describe the application of the Ting theory to nanometer- 
scale contacts. 

In the crack regime, viscoelastic response is limited to a narrow 
zone at the periphery of the contact and long-range deformations 
are treated elastically; i.e., creep effects are completely ignored. The 
theoretical description of the crack regime was developed by Barquins 
and Maugis [22,23]. They incorporated viscoelastic response into the 
fracture mechanics approach to contact mechanics. The crack length, 
I ,  provides a measure of the range of crack tip effects so that 

Barquins and Maugis validated their model experimentally for 
macroscopic contacts to polyurethane [ 10,22,23]. Basire and Fretigny 
[24] used SFM to study the engulfment of the SFM probe into a 
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198 W .  N .  UNERTL 

styrene-butadiene copolymer in the absence of any applied load. This 
process is driven entirely by adhesion forces [25]. 

Since 15 a, ?-crack 5 ?-creep [17]. For SFM-scale contacts to compliant 
materials the difference is expected to be large, so that ‘rcrack << T~~~~~ 

[26]. Thus, in SFM, one expects the response of the contact to be 
dominated by the regime whose relaxation time is closest to the 
relaxation time of the viscoelastic material under study. Further- 
more, both ?-,,,& and can be varied over wide ranges by in- 
creasing or decreasing the total contact time, tContact and, thus, 
changing ( V ) .  

The experimental range of tContact accessible in quantitative SFM 
experiments is fairly large, typically from a fraction of a 1 ms to  about 
IOOOs.  The longest contact times are limited by thermal drift and 
creep of the piezoelectric elements. The shortest times are limited 
by cantilever response times and roll-off frequencies of electronic 
filters. Measurements can also be affected by mechanical resonances 
and frequency-dependent phase shifts of the instrument. These instru- 
mental limitations, and others [8,12], must be quantitatively under- 
stood before reliable measurements of mechanical properties can be 
made. Contact radii are typically in the range 1 nm 5 a 5 lOOnm 
for the probe tips and loads normally used in SFM experiments. Thus, 
the average rate of change of the contact radius ( V )  E (da/dt)  lies in 
the range 0.001 nmjs 5 ( V )  5 100 pm/s. This overlaps the range of 
some macroscopic contact experiments, which typically have ( V )  2 
1 pm/s [23]. 

The major goal of this paper is to provide an overview of current 
understanding of the role that creep plays in the formation of contacts 
with nanometer-scale dimensions. The primary theoretical formula- 
tion of viscoelastic contact mechanics, due to Ting, is reviewed. 

Quantitative examples based on simple mechanical models are used 
to illustrate the creep effects expected in dynamic SFM loading 
experiments. Some of these results have been presented previously 
[20,21]. The major limitation of the Ting theory is its neglect of 
adhesion. Approaches to include adhesion, at least approximately, are 
discussed. Considerations for design of SFM experiments to  empha- 
size either the creep or  crack regimes are presented. Much of the ma- 
terial also applies to ultra-low-load indentation experiments like 
those of Asif, Wahl and Colton [9]. 
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NANOMETER-SCALE CONTACTS I99 

2. CONTACT MECHANICS FOR VISCOELASTIC 
MATERIALS IN THE ABSENCE OF ADHESION 

Viscoelastic effects become important whenever contact dimensions 
change in a time interval that is comparable with a characteristic 
relaxation time, 7, of the viscoelastic material. Ting [ I  81, following 
earlier work by Lee and Radok [27] and Graham [28], obtained a gen- 
eral solution to the equilibrium Hertz contact problem for the case 
of a rigid uxisj~mnietric probe with shape ,f ( r )  and an isotropic sub- 
strate with linear ivscoelusfic response. This response will be referred 
to as creep. He assumed a linear viscoelastic stress - strain (cr,, - E , ~ )  

relation of the form 

O, / ( t )  = [2G( f  - T j & J T ) / a T  + 6,,X(t - Tja€kk(T) / iSr ]c /T ( 3 )  J,’ 
where G ( f )  and A([) are time-dependent relaxation moduli. G(t)  is the 
relaxation modulus in shear. The bulk modulus K( t ) ,  the Poisson’s 
ratio, v(t), and the Young’s modulus, E(t) ,  are all time dependent and 
related to G ( f )  and A([) by K(r) = X + (2/3)G, v(t) = (1/2)(3K- 2G)/ 
( 3 K +  G )  and E(r) f 9KG/(3K + G )  [29]. The lower limit 0- allows for 
discontinuous jumps in stresses and strains at t = O .  Ting obtained 
explicit expressions for the contact radius, u(t),  and the penetration, 
& t ) ,  of the tip of the indenter assuming the following boundary condi- 
tions at z=O:  

_ _  = Crz = 0 r > u ( t j  

u _ ( r ,  t j  = S ( r j  - . f ( r j H ( t )  and cr_ = 0 r 5 a( t j  

where uz(r, t )  are the vertical displacements under the indenter in the 
z-direction and H ( t )  is the Heavyside step function. These boundary 
conditions, Eq. (4), assume the stress component in the interface to 
be zero. This condition can be met either if the contact is frictionless 
or if the probe and substates have identical mechanical properties, re- 
quirements that are probably seldom met in real contacts. However, 
at  least in the case of elastic contacts, failure to satisfy this condition 
leads to errors of only a few percent in contact radius and pull-off 
force [14,30]. The z-axis coincides with the symmetry axis of the 
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200 W.  N. UNERTL 

indenter, is directed into the sample, and has its origin at  the 
undeformed surface of the sample. These boundary conditions assume 
no adhesion and no friction at the interface between the indenter and 
sample. The solutions can be expressed in terms of two functions, @(i) 
and $(t). whose Laplace transforms are related by s&s) = l/s&s) = 
sG(s)/[l - s;(s)]. If the Poisson's ratio, v, is assumed constant, $ ( r )  
has the same form as G(t), the relaxation modulus in shear, and @ ( r )  
has the same form as the creep compliance in shear [18,29]. 

The specific form of the solutions depends on whether the contact 
radius, u(t) ,  increasing or decreasing and whether it is larger or smal- 
ler than its value at f=O. Figure 2 shows the three cases of interest 
here. The initial contact radius is u(,. Non-zero u,, can occur two ways. 
( I )  The contact can reach equilibrium following application of a 
load in the distant past. ( 2 )  The viscoelastic response has a perfectly 
elastic component as is the case for the Maxwell and standard solid 
models. In case I (Fig. 2), u(r)  is increasing ( t  5 r,,,) and the solution 
confirms the earlier result of Lee and Radok [27] which was based 
on the Boltzmann principle of correspondence [29]. Specifically, for 

0 f*@) t m  t t' time 

FIGURE 2 Variation of contact radius with contact time. 
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N A NOM ET E R-SCA L E CONTACTS 20 I 

a parabolic indenter with f ( r )  = r2,‘2R,,: 

If the applied load is known, u(r) is determined from Eq. (5) using 
Laplace transforms [ 181. 

Case I1 is the interval between r,,, and t ’ ,  where u begins to 
decrease but is still larger than its initial value, ( I ( , .  

where t l h l /8 t  is evaluated assuming Eq. (5) is valid beyond t,,,. These 
equations have two surprising features. First, the value of u ( t )  at any 
r in the interval r,,,, < I < r ’  is determined entirely by the history of 
the contact prior to t , ( t ) ,  the time at which u initially reached the 
same radius as at  t .  Second, the value of b l l ( r )  depends only on the 
history between t l ( t )  and r and is independent on the behavior prior 
to t l ( t ) .  

Finally, case I11 describes the behavior after ( I  has decreased below 
u,,; i.ci., for t 2 r ’, 

where q, hI  and h l l  are evaluated assuming Eqs. (5) and (6) are valid 
beyond t,,,. Equations ( 5 ) - ( 7 )  scale with R,, in the same way that 
the elastic Hertz results do; i.c., u x R!’j and 0 x R i 1 ’ 7 .  

3. EXAMPLES 

We now use the three simple mechanical models shown in Figure 3 
to illustrate the effects of creep on the formation and rupture of 
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V OIGT/KELVIN STANDARD SOLID 

M a x w e l l  

\:,, 

' p a r d  Sol id  

1 . . . . . . . . . . . . . . . . . - . _. - . 
' ' \Voig t /Kelv in  

- - - -  
# 

o c  
0 1 2 3 4 5  

tl r ,  

. 
h c v 

4, 

. ./ M a x w e l l  

0.0 
0 1 2 3 4 5  

t l r ,  

0 2 4 6 8 

FIGURE 3 Simple mechanical models of linear viscoelastic response. (a) Maxwell 
model; (b) Voigt/Kelvin model; (c) Standard solid model; (d) Creep compliance 
functions; (e) Stress relaxation functions. (f) Strain following a step increase of stress a t  
t / r ,  and a step decrease at  4 t / T l .  
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NANOMETER-SCALE CONTACTS 103 

contacts with nanometer-scale dimensions [26,3 I]. The elastic ele- 
ments are Hookeian springs each with shear modulus g .  Each viscous 
element is a Newtonian dashpot with viscosity '1. These mechanical 
models d o  not quantitatively describe actual polymers. However, they 
d o  capture the major features of the polymer response and, there- 
fore, provide simple models that are useful for semi-quantitative ana- 
lysis of data and for the design and interpretation of experiments. 
I t  is in this spirit that they are used here. Unless stated otherwise, 
specific examples shown below use the parameter values g = g2 = 

2 MPa, g l  = 10 MPa, r l =  10 MPa s. with corresponding relaxation 
times (see below) of T,$! = T [ , =  T~ = 50 s and T ,  = 8.33 s. 

The Maxwell model (Fig. 3a) consists of a spring and  dashpot in 
series. Figures Id and 3e show the creep compliance and stress relaxa- 
tion functions 

where rAr 3 71/g is the characteristic relaxation time following a step 
change in strain. The Maxwell model is fluid-like if the viscosity is 
small and  solid-like if it is large. Figure 3f shows the strain response 
of the Maxwell model subjected to a sudden step increase in stress 
by CT,, at t / r ,  = 1 followed by a sudden decrease by - CT,, at r / T l  =4. 
The instantaneous elastic response of the spring is followed by a lin- 
ear response of the dashpot. When the stress is removed. the spring 
instantly relaxes but the dashpot remains extended; the Maxwell mod- 
el can exhibit permanent deformation. 

The VoigtiKelvin model (Fig. 3b) has a spring and dashpot con- 
nected in parallel. The creep compliance and stress relaxation func- 
tions are 

where T ~ .  = 7jig is the characteristic relaxation time following a step 
change in stress. Equations (9) are plotted in Figures 3d and 3e. 
The dashpot prevents any instantaneous elastic response. Unlike 
the Maxwell model, there is no  permanent deformation (Fig. 3f) .  
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204 W. N. UNERTL 

The Maxwell model is a better approximation to the stress relaxation 
of polymers while the Voigt/Kelvin models better approximates 
creep response [31]. 

The standard solid model (Fig. 3c) is a three-parameter model that 
gives a better overall approximation to the response of polymers to 
changes in stress and strain. It consists of a Voigt/Kelvin model with 
parameters g2 and 77 in series with an elastic spring gl .  The creep 
compliance and stress relaxation functions are 

where ‘1 = 77/g2 is the relaxation time following a step change in stress 
and r 2  = q/(gl + g2) is the relaxation time following a step change in 
strain; is always greater than 72. Equations (10) are plotted in Fig- 
ures 3d and 3e. There is an instantaneous elastic response due to gl. 

If the loading varies cyclically at frequency w as in dynamical me- 
chanical testing, the response is characterized by a complex modulus 
and phase lag. For example, the mechanical response to a strain and 
stress 

(11) 
E (  t )  = E, exp( iwt) 
o(r) = u, exp i(wt + 6) 

with amplitudes E, and oo is given by 

and 

tan 6(w)  = Gz(w)/GI (w) (13) 

where GI  is the storage modulus and G2 is the loss modulus. Gl(w) 
and Gz(w) are related to G(t )  by 

(14) 

Dc 

GI (w) = w 1 G(t )  sin wrdt and G ~ ( w )  = w 
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NA NOM ETE R-SCA LE CONTACTS 20s 

Time scales of experimental creep data are converted into frequency 
scales using the relationship w =  Ijt [29]. 

The fraction of the maximum energy stored that is lost per cycle is 
A WjW = 2min6 which has its maximum value at d,,, the frequency 
at which tanb is maximum. Figure 4 illustrates the typical frequency 
dependence of Gl(w), G2(w) and tanh for the standard solid model 
with gl  = 1 GPa. g2 = 1 MPa and rl= 100 MPa . s. For these parameters, 
T~ = 100 s, T~ = 0.1 s and w,, = 0.3 16 S - I .  This model has properties 
similar to a styrene-butadiene random co-polymer with glass transi- 
tion temperature near room temperature [24,32]. GI is smallest at 
low w where the polymer has rubbery response and largest at high w 
where the polymer has glassy response. At high frequency, the dash- 
pot cannot respond and the system responds like an elastic spring 
with modulus G l ( w + m ) + g l .  At low frequency, the dashpot can 
fully relax and the system again responds elastically but with mod- 
ulus G l ( w i O ) + g l g 2 / ( g l  + g 2 ) = g 2  if g7<<g1 as in the example. 
Tanh peaks at d,) = 1 /J.1T2 where GI  is beginning to increase rapidly. 

, , ,,,.,.I , , ......, , , . , ,,,,.,, , , ,,,,,,, . . ""I 20 
Standard Solid 

- u 

0.001 0 0 1  0.1 I 10 100 1000 

w @-I) 

FIGURE 4 Frequency dependence of the storage modulus, G, .  loss modulus, G2.  and 
tanh for the standard solid model with g ,  = 1 GPa. g2 = I MPa and r / =  l 0 0 M P a . s  
( T , =  100s. T : = O . I S  andd, ,=0 ,316s- ' ) .  
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206 W. N. UNERTL 

Real polymers may have multiple peaks in tan6. These peaks are fre- 
quently associated with excitation of particular molecular motions 
of the polymer, the glass transition temperature, or the melting 
temperature. 

For the standard model, Figure 5 shows the interrelationships be- 
tween the relaxation times, T~ and r2, the frequency, #(,, and tand,,,,. 
The solid lines show the dependence of the maximum value of 
tan6 on r1 and r2 for tanb,,,=0.001, 0.01, 0.1, I ,  10 and 100; i.e.. 
from nearly elastic to very dissipative materials. The diagonal dashed 
lines show the values of u~,. The ranges of rl, r2 and w,, were selected 
to span that generally accessible to SFM instruments. When reading 
the plot, it is important to keep in mind that -rI > r2, always. Highly 

0.001 0.01 0.1 1 10 100 1000 

II 
b- 

1000 

100 

10 

1 

0.1 

0.0 1 

0.001 

FIGURE 5 Dependence of tan/j,,, on 7, and ~2 for frequencies accessible in SFM 
experiments. Solid lines are for tanhmax = 0.001, 0.01, 0.1, I .  10 and 100. Dashed lines 
show the frequencies at which the maxima occur. 
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NANOMETER-SCALE CONTACTS 207 

dissipative materials occur toward the upper left corner and more 
elastic materials toward the lower right diagonal edge. This type of 
plot is useful in selecting parameters to match the standard model to 
a particular set of data. For example, if T~ and L J ,  can be estimated, 
then T~ and tan6 can be determined directly from Figure 5 .  In the 
case of 1,2-polybutadiene [20], shear modulation measurements sug- 
gest T~ = 50s and tan6E 1 so that ~ 2 ~ 2 0 s  and w , ~ O . O 3  SKI. 

In the following subsections, these mechanical models are used to 
demonstrate the ways creep can affect nanometer-scale contacts. The 
response is calculated using a time-dependent applied load (Fig. 6a) 
selected to be similar to the load variation in a typical SFM force- 
distance measurement. The total time of contact between the probe 
and substrate is fcontnct and the time at which maximum load, P,,,,, 
occurs is ~~co,lt~,,. ,  where 0 < y < 1 .  Typically in SFM, ~ 1 %  0.2 - 0.3. 
The unloading time is t,,,,lc,,d = ( I  - y)~contL,ct. The slopes of the loading 
and unloading curves can be varied independently which is not the 
usual case in SFM experiments. The probe shape is assumed to be 
a paraboloid of revolution as in Figure 1 with R,, = 50 nm. For this 
probe shape and linear loading, the contact radius and deformation 

I. Time 

(b) 

< 
-3nRCJ' .... 

FIGURE 6 
with jump-to-contact and pull-OH' behavior. 

(a)  Time-dependent linear loading ramp; (b) Time-dependent loading ramp 
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208 W. N.  UNERTL 

113 113 213 R - 1 / 3  scale as a( t )  o( P,,,R, . Thus, all the specific 
results presented below for Pm,,=2nN and R,,=50nm are easily 
extended to any other combination of P,,,, and R,. 

The choice of probe shape bears additional comment. A parabolic 
probe is frequently assumed for model calculations primarily for com- 
putational convenience. It is also the one choice made in all the 
commonly-quoted results from contact mechanics (Hertz, JKR,  DMT, 
Barquins-Maugis, erc.) and, therefore, facilitates comparisons be- 
tween viscoelastic and elastic materials. Additionally, a paraboloid 
is a good approximation to a sphere as long as the contact radius is 
much smaller than the sphere's radius (a< R,,). As an example, Fig- 
ure la  compares a parabola and sphere both with radius R,= 
50nm. However, as soon as a reaches RJ10 or R$O, the paraboloid 
ceases to be a good approximation to a sphere. This condition is usu- 
ally exceeded in SFM-scale experiments on compliant materials. 
Additionally, real SFM probes are generally neither parabolic nor 
spherical, except within about the first nanometer from the end [ 131. 
Thus, for very compliant materials, which have S>> R,, even in the 
absence of an applied load [24,33], the shape of the probe far from 
the end must be included if quantitative comparisons between experi- 
ment and theory are to be made. A conical probe shape may be a 
better choice [24,33]. Incorrect choice of probe shape can have seri- 
ous consequences. For example, in Hertzian contacts b scales as P2j' 
for a parabolic probe, but as PIi2 for a conical probe. 

and b ( t )  c( Pm,, 

3.1. Maxwell and Voigt/Kelvin Models 

We now use the Maxwell and Voigt/Kelvin models to illustrate some 
of the important characteristics of creep. These models are simple 
enough that the Ting equations [Eqs. ( 5 ) - ( 7 ) ]  can be solved analyti- 
cally. In nearly all other cases, analytical solutions are not possible. 
Specific calculations below use g =  2 MPa, q =  100 MPa . s and rM = 

r v =  50 s. These values are similar to those measured experimen- 
tally for 1,2-poIybutadiene freshly cast from toluene solution [20,21]. 
These models have behavior that brackets that expected for real 
materials. 

Figure 7 shows the major features of the Ting solution for the 
Voigt/Kelvin model (Fig. 7a) and the Maxwell model (Fig. 7b). The 
contact radius, a, is .plotted as a function of t/t,,,t,,t for various 
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(a) 
VoigtKelvin Model 

-. ... - .... . 

0.0 0.2 0.4 0.6 0.8 1 .o 
*'5,,m, 

FIGURE 7 Solutions to the Ting model lor c o n t x t  of it rigid parabolic probe to a 
viscoelastic substrate described by ( a )  the Voigt, Kelvin niodel and ( b )  the Maxwell 
model. 

t,,,,ac,. Each curve is labeled by its value of t,.on,ac,. The maximum 
load occurs at ~ ~ = 0 . 2 .  Also shown for reference is the response of 
an  elastic material with the same g (solid line). The most striking fea- 
ture of both models shown in Figure 7 is that the time of maximum 
contact radius. tInax, does nor coincide with the time of maximum load 
( t  =j*t,,,,,,,,) as i t  does for elastic materials. Instead, maximum radius 
always occurs ufrer the maximum load. This delay occurs because the 
substrate continues to respond by creep even during the unloading 
cycle. 

Consider first the Voigt/Kelvin model (Fig. 7a). For finite contact 
times, the contact radius increases more slowly than in the elastic lim- 
it and its maximum value is always smaller. As tcc,,l,i,c, goes to val- 
ues much shorter than T ,  the response of the dashpot increasingly lags 
the applied load because tan6 = T ~ U ,  - T , . / / ~ ~ ~ ~ , ~ ~ , .  The contact be- 
comes increasingly rigid, the maximum value attained by ( I  becomes 
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smaller and smaller, and t,,, shifts closer and closer to the end of 
the contact (e .g . ,  t,,,, ---f t,,,lt,,,) as shown Figure 8. Specifically, 

i.e., t,,, is a function of only (.rv,y) and is independent of both P,, 
and R , .  The ordinate in Figure 8 is the fractional position of the peak 
in the unloading part of the cycle (t, , ,  - ~ ~ t ~ , , , ~ , ~ ~ )  normalized to the 
total unloading time (t,,,tact - yt,,,ltact); it varies between zero and 
unity. For the Voigt/Kelvin model, y has little influence on the relative 
time in the unloading cycle at which maximum radius is reached. The 
total possible range of 0 5 y 5 1 is shaded in dark gray in the figure. 
As t,,,tact becomes much longer than rv, the dashpot is more respon- 
sive, and t,,, decreases toward the time of maximum load; i.e., the 
contact becomes more and more elastic. The most rapid variation 
of t,,, occurs for tContact in the range 0 . 0 5 ~ ~  5 tCOntilC, 5 5rL,. 

FIGURE 8 Relative time of the maximum contact radius in the unloading cycle as a 
function of lcontacJr for the Maxwell and VoigtiKelvIn models. Adhesion is neglected. 
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In contrast to the Voigt/Kelvin model, the contact radius for the 
Maxwell model (Fig. 7b) is always larger than the elastic limit. In 
fact, a 2 R,, once t,,,,,,t > rM and this makes the more fluid-like 
Maxwell model more sensitive to the assumptions about the probe 
shape for a given (g, 77). If tcolllact 5 T , ~ ,  a has no delayed maximum. 
But as t,,,,t,,t >> r M ,  the dashpot has more and more time to respond, 
the maximum reached by a becomes larger and larger, and fp& 

moves closer to tCOlltnCt according to 

ix., the relative position of t,,,;,, is independent of y and depends only 
on rM.  The relative location of a,,l,, in the unloading cycle is com- 
pared with that of the Voigt /Kelvin model in Figure 8. The area shad- 
ed light gray indicates the full range of y values. 

Experimentally it is desirable to have the maximum contact area 
occur in the middle of the unloading cycle since this region is isolated 
from the times of maximum loading and rupture where the maximum 
might be more difficult to distinguish. Examination of Figure 8 shows 
that this is generally possible if the maximum load occurs as soon as 
possible ( 1’ z 0) and if tContnct z T .  

3.2. Standard Solid Model 

The standard solid model is more representative of contacts to poly- 
meric solids and exhibits behavior intermediate between the Maxwell 
and Voigt/Kelvin models. Johnson used the standard model to illus- 
trate the time and load dependence of N from the viewpoint of 
the Ting model [17]. Typical response behavior is shown in Figure 9. 
The radius is confined between two limiting cases. For t,,,,l,ct<< 
r , ,  the response approaches that of an elastic Hertzian contact 
of stiffness, g l .  For t,c,,tact >> T ~ ,  it approaches that of an elas- 
tic Hertzian contact of stiffness g,g7/(gI + g2) .  At intermediate 
t,,,t,cl, the behavior varies continuously between these limits. The 
contact radius, CI,  has the same delayed maximum behavior found 
for the simpler models. The relative time in the unloading 
cycle at  which the maximum contact radius occtirs is shown in 
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0.5 - 
0.4. 

' 

OS3- 

0.2. 

t e ~ a ~ 1 . 5 1  

I . e' - 
gl - 10 MPP 

8,' 1 MPP 

c* 

\ ,_._.__-.-.-.-.-.-.- (4 
_._.-.-- .................... ................. . z  ... ... 

' 

OS3- 

0.2. 

gr = 10 MPP 
FAST 1 g , = Z M P a  

t e ~ a ~ 1 . 5 1  

I . e' - 
gl - 10 MPP 

8,' 1 MPP 

c* 

p, 1 MY8 
\ 

0.4 0.6 0.8 1 .o 

t'tm*,a*t 

FIGURE 9 (a) Variation of the contact radius, u. for the standard solid model for 
rc~,nlact/TI =0,  0.2, 1.0, 2.0, 10, 20, co. The loading cycle is as in Figure l a  with j = 0.25 
and 7 = 10MPa.s;  (b)  u(t)/(du/dt) for the same parameters as in (a): (c) Time in 
unloading cycle at which maximum contact radius occurs as a function of I ~ ~ ~ ~ . ~ ~ ~ .  

Figure 9c. The largest t,,,x occurs for t c o n , a c , ~ ~ l .  This time is 
close to 1/wor the time at which energy dissipation has its maximum 
value. 
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NANOMETER-SCALE CONTACTS 213 

Unfortunately, SFM measurements cannot directly determine the 
contact radius. Therefore, i t  is more important to examine the effects 
of creep on the deformation, 6, because this parameter can, in principle 
at least, be determined by SFM. Figure 10a shows P vs. 6 obtained 

0 10 20 

Displacement (nm) 

c 
0 

e 0 0 1  I ' ' . ' . . . '  I ' 7 " " " I  ' ' ""'I 

0 01 0 1  1 10 I00 a" 
t l r ,  

FIGURE 10 (a)  Variation of the deformation, h, with load for the standard solid mod- 
el for various contact times, I , , , , , ~ ; ~ ~ , .  Parameters are the same as in Figure 9a; (b) Varia- 
tion of the deformation at separation with fc,,,,lt,cl for the parameters in Figure 9a. Also 
plotted is tan6 where the frequency-to-time conversion has been madc using t = T / W .  
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214 W. N. UNERTL 

for the same parameters as in Figure 9a. The solid lines indicate the 
limiting elastic cases, which are reversible. The loading portion of the 
deformation curves shift continuously between these limits as r,o,t,,t 
increases. As is the case for a, b continues to increase after the load 
starts to decrease, i.e., the probe tip continues to penetrate deeper 
into the substrate even though the load is decreasing. The maximum 
penetration is reached slightly after maximum a is reached. Separa- 
tion of the probe and substrate at the end of loading (i.e., r =  tContnct 
and c i = O )  occurs well before 6 can return to zero. The deformation 
at separation is plotted in Figure 10b and is largest when t lnax=2TI .  
Also plotted in the figure is the loss tangent where the frequency has 
been converted to time assuming t = T/W rather than the standard 
r = l/w. Clearly, the maximum deformation at separation is correlat- 
ed with the maximum energy dissipation and its shape, as a function 
of f,ontact, is very similar to that of tanti. The magnitude of the maxi- 
mum deformation at separation is large, nearly lOnm in this 
case. This large effect should be easily observable with SFM or other 
ultra low-load indention instruments. 

3.3. Implications for Experiments 
on Viscoelastic Materials 

These simple models provide a phenomenological framework for 
design and interpretation of experiments involving nanometer-scale 
contacts to viscoelastic materials. For example, the following general 
observations can be made: 

1. The maxima attained by the contact radius, LI, and deformation, 
6, always increase as the contact time tcOntact increases. 

2. The ranges on both a and can 5 are bounded unless the polymer 
behaves more like a Maxwell fluid. The upper bound is set by the 
elastic response determined by the limiting value of the modulus 
at low frequencies. The lower bound is set by the elastic response 
as determined by the high frequency limit of the modulus. 

3. Both a and S attain their maximum values during the unloading 
for a large range of contact times. The maximum delay occurs when 
the contact time is approximately equal to the inverse of w,, the 
frequency at which tan6 is maximum. 
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4. CREEP IN VISCOELASTIC CONTACTS 
WITH ADHESION 

The discussion of creep given above completely ignores adhesion. 
Unfortunately, the contact mechanics problem for a viscoelastic ma- 
terial that includes both adhesion and creep has not yet been solved. 
Certainly. adhesion will increase the contact area, just as i t  does 
for elastic materials. 

The boundary conditions on z=O, as given by Eq. (4), must be 
modified to include contributions to the radial pressure distribution, 
p ( r ) ,  from adhesion forces [16]. One possibility is to use 

everywhere at the interface, where M ~ D )  is the free energy of inter- 
action between planar surfaces separated by D and might be ap- 
proximated by Lennard-Jones or Dugdale potentials. This is the 
approach used by Hughes and White [34] and Barthel [I61 to obtain 
a general solution to the equivalent elastic problem. Equation (17) is 
the Derjaguin approximation and is satisfied for SFM-scale contacts 
[12]. The adhesion energy, W ,  is related to M' by [16] 

An alternative is to maintain the mixed boundary conditions of 
Eq. (4), but with p ( r )  specified only for r > a: 

This approach has the advantage that only the attractive portion of 
11' must be known. On the other hand, i t  assumes the spacing between 
the probe and substrate is constant everywhere inside the contact, 
usually estimated to be an interatomic spacing. 

In the absence of an adequate theory, Tirrell and co-workers [35] 
have suggested an ad Iioc approach to incorporate the effects of adhe- 
sion into the Ting model. In analogy with the Johnson. Kendall 
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216 W. N. UNERTL 

and Roberts (JKR) [36] theory of adhesive elastic contacts, they simply 
replace the load in Eq. (5) with an effective load based on the JKR 
result, i .e. ,  

This substitution is expected to be valid only as long as the contact 
radius is increasing, since Eq. (5) applies only in this case. Equation 
(20) was found to give a good description of the increase in area of 
contacts between 0.7 - 1.2 mm diameter spheres of diblock copoly- 
mers of poly(ethy1ene)-poly(ethy1ene-propylene) [35]. In particular, 
the values of W extracted with this analysis were in excellent agree- 
ment with values determined by contact angle measurements [37]. 

Unertl extended this approach to include cases for which u is 
decreasing [26]. He used the Derjaguin-Muller-Toporov (DMT ) limit 
PeK(f)  = P(t )+2rR,W (see Fig. 6b), rather than the JKR limit, for 
analytical simplicity. In the case of the Maxwell model, the only ef- 
fect is the expected increase in the contact radius. More importantly 
for the present discussion, there was no effect on the time lag at 
which the contact area reaches it maximum value. In the case of the 
Voigt/Kelvin model, the maximum value of the contact radius also 
increases. However, unlike the Maxwell model, t,,, shifts toward 
shorter delay times, but by no more than ten percent. These results 
suggest that the major conclusions of the preceding section, particular- 
ly those shown in Figures 8 and 9c, will not be significantly altered 
by inclusion of adhesion. Specifically, inclusion of DMT adhesion ap- 
pears to make only minor modifications to the Ting analysis for 
SFM-scale experiments. 

A model proposed recently by Hui, Baney and Kramer incorpo- 
rates adhesion and viscoelasticity [38]. The key feature of this model 
is the explicit realization that the cohesive zone at the crack tip must 
be finite in extent. This means that stresses are finite everywhere 
and, consequently, the rate of energy flow into the cohesive zone is 
dependent on the crack speed, duldt. That is, unlike the case of elastic 
materials, the stress intensity factor K ( t )  must be time dependent. 
Viscoelastic effects are described using the approach of Yang [39], 
which restricts the results to monotonically increasing contact area. 
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The contact area and deformation are expressed as 

and 

where is the short time compliance, J,,, is the short time relaxation, 
K,(t)  is the time-dependent Mode I stress intensity factor, and 
4( t )  * P ( t )  = Ji 4(t  - T ) ( ~ P ( T ) / & ) ~ T .  K , ( t )  is eliminated from (21) 
and (22) using Schapery's solution for a closing crack [40], in which 
the cohesive forces are described by a Dugdale potential and the 
viscoelastic response by a simple creep compliance function 

where and 4 ,  and m are constants. The long-time behavior of this 
model is fluid like. The rate of change of contact radius is given by 

where 

For a load-controlled experiment, P(t )  is specified and Eqs. (24) and 
(21) or (22) are solved simultaneously to eliminate KI  and obtain the 
time variation of a and 6. For a displacement-controlled experi- 
ment, 6 ( t )  is specified and Eqs. (24) and (21) or (22) are solved simul- 
taneously to obtain the time variation of a and P. 
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218 W.  N .  UNERTL 

Hui, Baney and Kramer show explicitly that Eq. (20), used by 
Tirrell and coworkers, is a misapplication of the correspondence prin- 
ciple and cannot be correct. In numerical simulations, they obtain 
reasonable fits to the data of Ref. [35] and also show that Eq. (20) 
overestimates a(t). 

The model used by Hui, Baney and Kramer requires a detailed 
knowledge of the local failure and bonding processes at the crack 
tip. This leads them to suggest that adhesive properties of contacts 
to viscoelastic materials are not best characterized by the work of 
adhesion, W, but rather by the stress intensity factor KI(t) .  The rela- 
tionship between a(t) and K,, Eq. (24), is complex since a(r) can 
depend on the entire history of KI .  

5. TIME SCALES IN SFM EXPERIMENTS 

As discussed in the introduction, the creep and crack regimes can be 
distinguished by their relaxation times, 7,,,& and T,,,,~. In this section, 
the expected magnitudes of these relaxation times are estimated and 
the experimental regimes in which one is emphasized over the other 
are determined. Estimation of T,,,,k for a viscoelastic material re- 
quires an estimate of the crack length, I, which can be obtained us- 
ing the Dugdale interaction model [17, 41, 421, as follows. 

The Dugdale model provides a more realistic description of the 
deformations near the contact periphery than does the JKR model. 
The pressures in the contact are compared for the two models in 
Figure 11  with the JKR model on the right and the Dugdale model on 
the left. The Dugdale interaction is also compared with a Lennard- 
Jones interaction in the insert on the left. The Dugdale interaction 
approximates the actual probe-substrate interaction force per unit 
area as a square well of depth, cr(,, and range, h,. The work of adhe- 
sion is W = coho. 

In the JKR limit, the pressure in an adhesive contact between elas- 
tic bodies has two components, shown schematically on the right 
hand side of Figure 11. They arise from the external load and from 
the adhesion [14]. Superimposed on the figure (heavy lines) are the 
outlines of the substrate and parabolic tip as in Figure lb. The 
Hertzian contribution from the external load (dashed line), 
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Duadale 

a zlDn 3 

JKR 

1 

a I a 

F I G U R E  1 I Coniparisoii 0 1  the Dugdale and J K R  models 

Pexternnl(r) cc d m ,  has the same form in both JKR and 
Dugdale models. It is largest in the center and falls to zero at the 
edges. In the JKR model, the adhesive contribution (dotted line) 
results in an additional contribution to the pressure, ~ J K R ( Y )  cx -1 /  
d m  where u now depends on the adhesion and, conse- 
quently, so does pexternnl. p j K R  is compressive and diverges strongly 
and unphysically at the periphery ( r  = 0). This non-physical divergence 
is eliminated in the Dugdale model (dotdash line) where [lo] 

where t?? = (LI + d) /u.  In both JKR and Dugdale models, it is clear that 
the dominant effects of adhesion occur at the contact periphery. 

The lateral distance, d, over which the Dugdale force acts outside 
the contact defines the Dugdale zone. For a parabolic probe, d is 
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determined from [ 101 

where E* E [ (1  + vf)/El + (1 + v i ) /Ez ]  is the effective modulus 
and the subscripts refer to the probe and substrate. In the limit d<< a, 

and is independent of R,. (The equivalent expression given in Ref. [ 171 
is incorrect.) 

Creep and crack response are very different at the SFM-scale 
because I and a are very different. To show this, first consider a crack 
between elastic materials. Greenwood and Johnson [42], using the 
approach of Schapery [43], showed that the crack length, I ,  can be 
estimated as I = E*h5/2W. Comparing this with Eq. (27) shows that 
/=2d/.rr. Thus, d is a reasonable estimate of the crack length and, in 
the following, we assume I =  d. For viscoelastic materials, Greenwood 
and Johnson further showed that the same result holds but with 
E* replaced l/(b(Tcrack). Thus, d/a is in the range E;h2/2aW 5 
d /a  5 E;h5/2aW where E& is the limiting modulus for a slow mov- 
ing crack ( ~ , , ~ ~ ~ - ' c o )  and E; >> EL is the limiting value for a fast 
moving crack (Tcrack + 0). Combining Eqs. ( I )  and (2), and using 
the JKR radius at pull-off (aPull-,,~f = +'mi as a convenient 
lower bound to a, yields 

Equation (28) is plotted as a function of E; in Figure 12 for the 
limiting combinations of W and R,  expected in SFM measurements. 
SFM probe tips have nominal radii in the range 10 nm < R,  < 100 nm 
and 10mJ/m2 < W < 100mJ/m2 includes the range of W typically 
encountered in studies of polymer adhesion [44]. This analysis shows 
that T~,,,,, > lOo?-cra& for all materials with E: <lOOMPa, i.e., the 
time scales are very different with T,,,,~ being significantly longer. 
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Since Tcr,& and T,,,,~ are very different, it should be possible to 
study them separately. To do this, the SFM instrument must be able 
to satisfy two conditions. First, the characteristic relaxation time, 7 ,  

of the material under study must lie within the accessible range of 
experimental contact times, tcc,,,tc,c,. Second, the experimental param- 
eters must be adjusted so that either T,,,,k or T,,.,,~ is close to the 
characteristic relaxation time, T of the sample under study. Using 
the approximations described above, the following expressions are 
obtained for houndiiirzg values of Tcr,,k and T,,.,,,, 

and 

TCrdck 5 d / v  = .irE,:h;/4VW. (30)  

Note that Tcrack is independent of probe radius but T,,,,~ 0: R;I3. The 
bands of limiting values of Eqs. (29) and (30) that are shown in Figure 13 
as a function of E:, were calculated for ( V )  = 100 nnijs and 10mJj 
m2 < W < 100mJ/m2, and lOnm < R,, < 100nm. For this range of 
parameters, the entire creep regime always lies above the band labeled 
“creep” and the crack regime lies below the band labeled “crack”. 
Equivalent results for other choices of ( V )  are obtained by simply 
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FIGURE 13 
l00nm/s.  

Creep and crack regimes accessible in SFM experiments for (I.’) = 

shifting both bands vertically by (loo/( V ) )  where ( V )  is measured in 
nmjs. For the example of Figure 13, creep effects are seen to dominate 
the SFM response for polymers with effective moduli below about 
100 MPa and relaxation times in the range 0.1 s 5 T 5 10 s. Obviously, 
t,,,,tact must lie in the same range as T ,  which is the range used for 
the majority of force-distance curves reported in the literature. In ord- 
er to bring the crack regime into this experimental range, V would 
have to be reduced by 3 to 4 orders of magnitude. SFM experiments 
have been done in this range by Basire and Fretigny [24] who meas- 
ured the engulfment of an SFM probe into a styrene-butadiene ran- 
dom copolymer under zero load conditions. In this case, the increase 
in contact area is driven solely by surface forces and opposed by 
deformation of the substrate. 

Tapping or intermittent contact mode [45] measurements involve 
very short contact times (tcontacL < 10-5s or less) with very high 
( V )  2 10pm/s. Again, creep effects will tend to dominate the 
measured response if the viscoelastic material also has T N fCOntaCt. 
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In general, the creep regime is expected to dominate SFM nieas- 
urenients on compliant materials with Ea 5 l 00MPa .  For materials 
with higher moduli. the creep and crack regimes lie closer together 
and experiments are likely to be influenced by both. The require- 
ment for low I’ and short r,,,,l;,,l makes i t  difficult for SFM to operate 
i n  the crack regime for most compliant materials. Unfortunately, 
this is the regime with the most complete theoretical model [ I  I ] .  

The discussion given above is presented in terms of average speeds, 
( V ) .  1,’ cannot be controlled in actual SFM instruments and i t  varies 
over a very wide range. Thus, in a real contact, the behavior will not 
be as simple as indicated by the arguments given above. This is illus- 
trated in Figure 9b for the standard model where the instantaneous 
value of ~ , , , . ~ ~ ( t )  = u(r)/(du/dr) is plotted for the N( t )  results shown in 
Figure 9a. The relaxation times, T~ and T?,  for the mechanical mod- 
el are indicated by the solid lines. T,,,,p(f) changes by over five or- 
ders of magnitude. I t  is very short during the initial stage of contact 
formation and in the final stages of pull-off so that the assumption 
a>>l may no  longer be valid. At the point of maximum contact 
area. T,,,,p(t) exceeds 1000s. Its average value ranges between 5 s and 
33s as r,,,,lacl increases from 0 . 3 ~ ~  to 2 0 ~ ~ .  Even for the examples 
with the largest time lag t o  reach LI,,~,,, ~ , , , , ~ ( r )  is near T~ and T? for 
a relatively small fraction of the total contact time. 

6. SUMMARY 

The theory developed by Ting [18,19] has been applied to describe 
the contributions of creep to the response of nanometer-scale contacts 
during loading and  unloading. This theory neglects the effects of 
adhesion but can be solved analytically for several simple models. 
None the less, it gives valuable insights into the behavior of small 
contacts. The major result is that creep can cause the contact area, u, 
and deformation, h ,  to reach their maximum values well u f t u  the 
maximum load has been applied to  the contact. Results obtained using 
simple mechanical models to describe the response of the viscoelastic 
materials provide useful guidance on how to optimize experiments to 
study creep. The maximum deformation at the instant the contact is 
broken is large and correlates well with the time dependence of the 
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loss function, tanS. A typical SFM instrument should be able to study 
creep processes in materials whose characteristic relaxation times are 
in the range from roughly a millisecond up to a few hundred seconds. 

Since the characteristic relaxation times of creep and crack regimes 
differ substantially for SFM experiments, the contact times of force- 
distance curves can be adjusted so that the response is by dominated 
one or the other. 

Quantitative characterization of compliant viscoelastic materials 
requires that force 11s. distance curves be carried out over as wide a 
range of contact times as possible. This observation should be parti- 
cularly relevant for many biological materials where experimental con- 
tact times have been limited. Additionally, it suggests that studies 
of pull-off behavior that have traditionally relied on rather short 
contact times will need to be re-evaluated. 

Most of the models described here are obviously too simple to be 
used for quantitative analysis of experimental data. However, most 
important differences are expected to be qualitative and the major 
conclusions reached using them will remain correct. The more rigor- 
ous analysis recently put forth by Hui, Baney and Kramer [38] cor- 
rectly includes adhesion and creep, but only applies to cases where 
the contact size is increasing. I t  has not yet been applied to nanometer- 
size contacts. Once such an analysis becomes available, more com- 
plex systems such as layered films and living cells can be attacked 
quantitatively. 
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